A Multimedia Retrieval Framework Based on Automatic Graded Relevance Judgments
نویسندگان
چکیده
Traditional Content Based Multimedia Retrieval (CBMR) systems measure the relevance of visual samples using a binary scale (Relevant/Non Relevant). However, a picture can be relevant to a semantic category with different degrees, depending on the way such concept is represented in the image. In this paper, we build a CBMR framework that supports graded relevance judgments. In order to quickly build graded ground truths, we propose a measure to reassess binary-labeled databases without involving manual effort: we automatically assign a reliable relevance degree (Non, Weakly, Average, Very Relevant) to each sample, based on its position with respect to the hyperplane drawn by support vector machines in the feature space. We test the effectiveness of our system on two large-scale databases, and we show that our approach outperforms the traditional binary relevance-based frameworks in both scene recognition and video retrieval.
منابع مشابه
Document Image Retrieval Based on Keyword Spotting Using Relevance Feedback
Keyword Spotting is a well-known method in document image retrieval. In this method, Search in document images is based on query word image. In this Paper, an approach for document image retrieval based on keyword spotting has been proposed. In proposed method, a framework using relevance feedback is presented. Relevance feedback, an interactive and efficient method is used in this paper to imp...
متن کاملSemiautomatic Image Retrieval Using the High Level Semantic Labels
Content-based image retrieval and text-based image retrieval are two fundamental approaches in the field of image retrieval. The challenges related to each of these approaches, guide the researchers to use combining approaches and semi-automatic retrieval using the user interaction in the retrieval cycle. Hence, in this paper, an image retrieval system is introduced that provided two kind of qu...
متن کاملNugget-Based Computation of Graded Relevance
We propose a simple method for assigning graded relevance values to documents judged during the course of a retrieval experiment. In making this proposal, we aim to avoid the potential for ambiguity and greater cognitive load associated with standard graded relevance judgments. Under our proposal, we first decompose a retrieval topic into a number of informational nuggets. For each document, a ...
متن کاملRelevance feature mapping for content-based multimedia information retrieval
This paper presents a novel ranking framework for content-based multimedia information retrieval (CBMIR). The framework introduces relevance features and a new ranking scheme. Each relevance feature measures the relevance of an instance with respect to a profile of the targeted multimedia database. We show that the task of CBMIR can be done more effectively using the relevance features than the...
متن کاملSemi-Automatic Annotation and Retrieval of Visual Content Using the Topic Map Technology
There are still major challenges in the area of automatic indexing and retrieval of multimedia content data for very large multimedia content corpora. Current indexing and retrieval applications still use keywords to index multimedia content and those keywords usually do not provide any knowledge about the semantic content of the data. With the increasing amount of multimedia content, it is ine...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012